# ASSESSMENT OF CHAR MORPHOLOGY IN HIGH PRESSURE PYROLYSIS AND COMBUSTION



Katharine Elaine Benfell, BSc, MSc (Hons), Auckland

NOT FOR LOAN



A Thesis Submitted to the Faculty of Science and Mathematics in Candidacy for the Degree of Doctor of Philosophy

Department of Geology

- September 2001 -

I hereby certify that the work embodied in this thesis is the result of original research and has not been submitted for a higher degree to any other University or Institution.

(Signed)

#### Acknowledgements

This thesis would never have been completed without the assistance of many people. I am indebted to my principal supervisor, Dr Judy Bailey, for her guidance, encouragement, support, depth of knowledge of all things coal and superior editing skills. I am delighted that our relationship has progressed from that between student and supervisor to friendship. I am also very grateful to my industrial co-supervisor Mr Jim Happ for promptly reviewing my chapters, helping me to see the industrial perspective of my work and being so enthusiastic about the study in general.

The financial and physical support of the Co-operative Research Centre for Black Coal Utilisation (Black Coal CRC), which is funded in part by the Co-operative Research Centres Program of the Commonwealth Government of Australia, was greatly appreciated. The Black Coal CRC funded a University of Newcastle Postgraduate Research Scholarship for the project and costs for trips to a number of conferences within Australia and overseas. I am equally grateful to the Department of Geology for providing me with a welcoming "home" for the duration of my study, and for supporting my trip to the 28<sup>th</sup> International Symposium on Combustion.

A number of staff were immensely helpful at various stages. Richard Bale, Esad Krupic, Sharon Francis, Kathy Allan, Judy Winwood-Smith, Elaine Swift and Carrol Doble of the Geology Department helped to keep everything running smoothly during the course of the project. Dr Gary Bryant, Dr Liza Elliott and Neil Gardner of the Department of Chemical Engineering assisted with the experimental work done in the Black Coal CRC laboratories.

I would also like to thank Dr Andrew Beath (formally of Pacific Power) and Mr. Peter Benyon from Pacific Power for providing the initial char samples used in this study, without which I would not have been able to proceed. Dr. Shan Ouyang from the Cooperative Research Centre for Clean Energy from Lignite conducted the pressurised drop tube furnace experiments that produced the chars used. I am grateful to Dr. Hongwei Wu for performing the atmospheric pressure drop tube furnace experiments for the lithotype suite. Thanks to Graham O'Brien and Barry Jenkins of CSIRO for the FMR analyses. Thanks also go to the suppliers of the coal samples studied. At the outset of my project, the differences in training and background between myself as a geologist and my Black Coal CRC colleagues as chemical engineers was painfully apparent (at least to me). I am extremely grateful to all my colleagues for helping me get to grips with a chemical engineer's view of coal and its utilisation. In particular, Dr Guisu Liu, Dr Hongwei Wu, Dr Gary Bryant, Dr Liza Elliott, Dr Chris Bailey, Dr Raj Gupta and Professor Terry Wall helped me to bridge that gap whether my questions related specifically to my project or not.

Perhaps the greatest advantage of conducting this study within the environment of the CRC has been the opportunity to team up with others. Without this chance, I would not have collaborated with Dr Guisu Liu and Mr Daniel Roberts on our multidisciplinary joint paper for the 28<sup>th</sup> International Symposium on Combustion. I am grateful for the experience.

My Geology Department colleagues helped me to keep a sense of humour, especially during long hours of microscopy. Thank you Tania Wilson, Andrew Walker, Helen Beath, Gareth Chalmers, Dr Yan Yan Sun, Dr Jennifer Wadsworth, Kev Rumming, Mark Pawley, Dr Murray Little, Martine Graham and the tea-room jokers (you know who you are!) for making me laugh. Friday beers at the Staff House were definitely worthwhile.

People outside the work environment were also very significant in helping me. At a time when life was very tough, Bruce Furner made the difference between giving up and pushing on - thank you for being there. My parents, parents-in-law and sister have always held the greatest confidence in me and my ability to complete the thesis - thank you for believing in me. Thanks too, to my former MSc supervisors, Dr Basil Beamish and Associate Professor Kerry Rodgers, without them, I would never have chosen to study coal utilisation. More recently, members of the April 2000 Playgroup have provided much welcome support.

Finally, I would like to express my great love and appreciation for my husband, Steven, and son, Jason. Without your support, encouragement, tolerance, love and willingness to follow me on this path, I would never have reached this destination. Thank you.

### **Table of Contents**

| A  | CKNOWLEDGEMENTS                                                                           |      |
|----|-------------------------------------------------------------------------------------------|------|
| TA | ABLE OF CONTENTS                                                                          | IV   |
| G  | LOSSARY, ABBREVIATIONS AND SYMBOLS                                                        | XIII |
| A  | 3STRACT                                                                                   | xıx  |
| 1  | OVERVIEW, BACKGROUND AND PROJECT OBJECTIVES                                               | 1    |
|    | 1.1 Introduction                                                                          | 1    |
|    | 1.2 Background                                                                            | 3    |
|    | 1.2.1 Principles of coal combustion                                                       | 3    |
|    | 1.2.2 Principles of coal gasification                                                     | 6    |
|    | 1.2.3 Differences between combustion and gasification environments                        | 7    |
|    | 1.3 Coal and Char Composition, Structure and Reactivity                                   | 9    |
|    | 1.3.1 Coal rank, petrographic and mineral effects on intrinsic reactivity in combustion   |      |
|    | and gasification                                                                          | 9    |
|    | 1.3.1.1 Coal Rank and Petrographic Effects                                                | 9    |
|    | 1.3.1.2 Mineral Effects                                                                   | 11   |
|    | 1.3.2 Influence of coal structure on char formation and combustion or gasification rate   | 13   |
|    | 1.3.2.1 Effect of Active Sites, Porosity and Surface Area on Combustion and Gasification  | 13   |
|    | 1.3.2.2 Particle Size Effects on Coal and Char Reactivity                                 | 16   |
|    | 1.3.3 Influence of experimental procedure on coal and char in combustion and gasification | 17   |
|    | 1.3.3.1 Heat Treatment Temperature Effects                                                | 18   |
|    | 1.3.3.2 Heating Rate Effects                                                              | 19   |
|    | 1.3.3.3 Influence of Furnace Atmosphere                                                   | 19   |
|    | 1.3.3.4 Pressure Effects                                                                  | 20   |
|    | 1.3.4 Char morphology and reactivity in combustion and gasification                       | 21   |
|    | 1.4 Objectives and Approach                                                               | 22   |
| 2  | EXPERIMENTAL                                                                              | 25   |
|    | 2.1 Introduction                                                                          | 25   |
|    | 2.2 Coal selection                                                                        | 25   |
|    | 2.3 Sample Preparation                                                                    | 28   |
|    | 2.3.1 Feed coals                                                                          | 29   |
|    | 2.3.2 Particle size analysis                                                              | 29   |
|    | 2.3.3 Sample setting for microscopic analysis                                             | 29   |
|    | 2.4 Combustion experiments                                                                | 31   |
|    | 2.4.1 Laboratory-scale drop tube furnace (DTF)                                            | 31   |

| 2.5 | Gasification experiments                                       | 31 |
|-----|----------------------------------------------------------------|----|
|     | 2.5.1 Pilot-scale pressurised drop tube furnace (PDTF)         | 31 |
| 2.6 | Microscopic analysis                                           | 33 |
|     | 2.6.1 Maceral and microlithotype analysis                      | 33 |
|     | 2.6.2 Reflectance analysis                                     | 34 |
| 2.7 | Chemical analyses                                              | 34 |
|     | 2.7.1 Proximate analyses                                       | 34 |
|     | 2.7.2 Ultimate analyses                                        | 34 |
|     | 2.7.3 Burnout and volatile yield                               | 34 |
| 2.8 | Char morphologic analysis                                      | 35 |
| 3   | GASIFICATION AND COMBUSTION CHAR MORPHOLOGIES                  | 36 |
| 3.1 | Introduction                                                   | 36 |
| 3.2 | 2 Aims of Char Morphological Study                             | 37 |
| 3.3 | Parent Coal Characteristics                                    | 37 |
| 3.4 | Char Preparation and Analysis                                  | 39 |
|     | 3.4.1 Char preparation                                         | 39 |
|     | 3.4.2 Image analysis and char classification                   | 39 |
|     | 3.4.2.1 Maceral and Rank Effects                               | 44 |
|     | 3.4.2.2 Effects of Furnace Pressure                            | 45 |
|     | 3.4.2.3 Effects of Heating Rate and Heat Treatment Temperature | 47 |
|     | 3.4.2.4 Effects of Anisotropic Textures                        | 48 |
|     | 3.4.2.5 Pyrolysis Char                                         | 49 |
|     | 3.4.2.6 Combustion Char                                        | 49 |
|     | 3.4.2.7 Parameters Correlated with Unreacted Carbon            | 50 |
| 3.5 | 5 Evaluation of Series P1 High Pressure Pyrolysis Chars        | 51 |
|     | 3.5.1 Volatile yields and experimental conditions              | 51 |
|     | 3.5.2 Effect of coal rank                                      | 52 |
|     | 3.5.3 Effect of parent coal composition                        | 52 |
|     | 3.5.4 Effect of pressure                                       | 54 |
| 3.0 | 6 Evaluation of Series P2 High Pressure Pyrolysis Chars        | 57 |
|     | 3.6.1 Effect of coal rank                                      | 58 |
|     | 3.6.2 Effect of parent coal composition                        | 59 |
|     | 3.6.2.1 Maceral Influences on Char Morphology                  | 59 |
|     | 3.6.2.2 Microlithotype influences on Char Morphology           | 63 |
|     | 3.6.3 Effect of pressure                                       | 66 |
| 3.  | 7 Evaluation of Combustion Chars                               | 68 |
|     | 3.7.1 Effect of coal rank                                      | 69 |
|     |                                                                | 60 |
|     | 3.7.2 Effect of parent coal composition                        | 09 |

|   | 3.7.2.2 Microlithotype Composition                                                    | 73            |
|---|---------------------------------------------------------------------------------------|---------------|
|   | 3.8 Comparison of High Pressure Pyrolysis and Combustion Chars                        | 74            |
|   | 3.9 Volatile Yield and Burnout                                                        | 77            |
|   | 3.10 Review                                                                           | 78            |
| 4 | EFFECTS OF HIGH PRESSURE PYROLYSIS ON THE CHAR MORPHOLOGIES OF FOUR                   | BITUMINOUS    |
|   | RANK COALS                                                                            | 80            |
|   | 4.1 Introduction                                                                      | 80            |
|   | 4.2 Aims of Char Morphological Study                                                  | 80            |
|   | 4.3 Parent Coal Characteristics                                                       | 80            |
|   | 4.4 Char Preparation and Analysis                                                     | 81            |
|   | 4.5 Evaluation of 1100 °C Series P3 and 1300 °C P4 High Pressure Pyrolysis Chars      | 81            |
|   | 4.5.1 Effect of coal rank                                                             | 81            |
|   | 4.5.2 Effect of parent coal composition                                               | 82            |
|   | 4.5.2.1 Maceral Influences on Char Morphology                                         | 82            |
|   | 4.5.3 Effect of pressure                                                              | 88            |
|   | 4.6 Effect of Temperature on Series P3 and P4 Chars                                   | 105           |
|   | 4.7 Review                                                                            | 105           |
|   | 4.7.1 Effect of pressure on Series P3 and P4 chars                                    | 105           |
|   | 4.7.2 Effect of temperature on Series P3 and P4 chars                                 | 106           |
| 5 | CHAR MORPHOLOGIES OF LITHOTYPE VARIANTS FROM DRAYTON COAL                             | 107           |
|   | 5.1 Introduction                                                                      | 107           |
|   | 5.2 Aims of Char Morphological Study                                                  | 107           |
|   | 5.3 Parent Coal Characteristics                                                       | 108           |
|   | 5.4 Char Preparation and Analysis                                                     | 109           |
|   | 5.5 Evaluation of Pyrolysis Series P5 (PDTF) and P6 (DTF) Chars                       | 109           |
|   | 5.5.1 Effect of parent coal composition                                               | 109           |
|   | 5.5.1.1 Maceral Influences on Char Morphology                                         | 109           |
|   | 5.5.1.2 Effect of maceral composition on mean diameter, porosity and sphericity       | of Lithotype  |
|   | Series P5 and P6 Chars                                                                | 114           |
|   | 5.5.2 Effect of pressure                                                              | 115           |
|   | 5.5.2.1 Morphology of Lithotype Series P5 and P6 Chars                                | 115           |
|   | 5.5.2.2 Effect of pressure on mean diameter, porosity and sphericity of Lithotype Ser | ies P5 and P6 |
|   | Chars                                                                                 | 122           |
|   | 5.6 Volatile Yield                                                                    | 122           |
|   | 5.7 Review                                                                            | 124           |
| 6 | PREDICTION OF CHAR PROPERTIES USING THE FULL COAL REFLECTOGRAM                        |               |
|   | 6.1 Introduction                                                                      | 126           |
|   |                                                                                       | 120           |

vi

| 6.2 Aims of Reflectogram Study                                                 | 127                 |
|--------------------------------------------------------------------------------|---------------------|
| 6.3 Measurement of the Full Coal Reflectogram                                  | 128                 |
| 6.4 Characteristics and Analysis of the Full Coal Reflectogram                 | 129                 |
| 6.5 Correlation of Full Coal Reflectogram with Char Properties                 | 134                 |
| 6.5.1 Evaluation of High Pressure Pyrolysis Chars Prepared at 1100 °C and 1300 | °C (Series 2-5) and |
| Combustion Chars Prepared at 1100 °C and 1 atm (Series 1)                      | 135                 |
| 6.5.1.1 Correlation of coal properties with char geometry                      | 136                 |
| 6.5.1.2 Correlation of coal properties with char group proportions             | 140                 |
| 6.6 Predictability of Char Properties                                          | 143                 |
| 6.7 Review                                                                     | 148                 |
| 7 DISCUSSION AND CONCLUSIONS                                                   | 151                 |
| 7.1 Conclusions from Whole Coal Studies                                        | 151                 |
| 7.1.1 Effect of coal rank and netrography                                      | 151                 |
| 7.1.1 Effect of coal rank and periography                                      | 151                 |
| 7.1.1.2 Coal native and char morphology                                        | 151                 |
| 7.1.2 Effect of furnace pressure                                               | 152                 |
| 7.1.2 Effect of furnace temperature                                            | 153                 |
| 7.2 Prediction of volatile yield and burnout                                   | 153                 |
| 7.3 Conclusions from Lithotype Studies                                         | 153                 |
| 7.3.1 Effect of coal petrography                                               | 153                 |
| 7.3.2 Effect of furnace pressure                                               | 154                 |
| 7.3.3 Prediction of volatile yield                                             | 155                 |
| 7.4 Conclusions from Reflectogram Studies                                      | 155                 |
| 7.4.1 Relationships to char properties                                         | 155                 |
| 7.4.2 Predictability of char properties from the full coal reflectogram        | 155                 |
| 7.5 Implications for Coal Reactivity Modelling                                 | 156                 |
| 7.6 Recommendations for Future Work                                            | 157                 |
| REFERENCES                                                                     | 159                 |
| Appendix I                                                                     | 172                 |
| Appendix II                                                                    | 175                 |
| Appendix III                                                                   | 179                 |
|                                                                                | 189                 |
|                                                                                | 100                 |
| THE LOW RANK CKC PRESSURISED DROP TUBE FURNACE                                 | 189                 |
| Furnace Operation                                                              | 189                 |
| APPENDIX V                                                                     | 191                 |
| APPENDIX VI                                                                    | 193                 |

vii

| Publications resulting from this project | 193 |
|------------------------------------------|-----|
| Journal Articles                         | 193 |
| Conference Papers                        | 193 |
| Prior Publications                       | 194 |
| Journal Articles                         | 194 |
| Conference Papers                        | 195 |
|                                          |     |

### **Table of Figures**

| Figure 1.1 Schematic representation of the main chemical reactions and physical changes during entrained         |
|------------------------------------------------------------------------------------------------------------------|
| flow gasification4                                                                                               |
| Figure 2.1 Map of Eastern Australia showing coal basins and sample locations                                     |
| Figure 2.2 Dry feed coal (a), prepared polished coal blocks (b), high pressure pyrolysis char (c) and prepared   |
| polished char mount                                                                                              |
| Figure 2.3 Schematic diagram of the pressurised drop tube furnace at the Low Rank CRC                            |
| Figure 3.1 Percentage of Series P1 char subtypes formed for each coal                                            |
| Figure 3.2 Percentage of Group I, II and III Series P1 chars for each coal                                       |
| Figure 3.3 Drayton char pyrolysed at 1100°C and 8 atm                                                            |
| Figure 3.4 Drayton char pyrolysed at 1100°C and 8 atm                                                            |
| Figure 3.5 Drayton char pyrolysed at 1100°C and 15 atm                                                           |
| Figure 3.6 Drayton char pyrolysed at 1100°C and 15 atm                                                           |
| Figure 3.7 Percentage of char types for Series P1 chars prepared at 1, 5, 8 and 15 atm pressure                  |
| Figure 3.8 Percentage of Group I, II and III Series P2 chars for each coal                                       |
| Figure 3.9 Percentage of Series P2 char subtypes formed for each coal                                            |
| Figure 3.10 Series P2 char mean diameters, porosity and sphericity                                               |
| Figure 3.11 Correlation between telovitrinite and vitrite+clarite                                                |
| Figure 3.12 Correlation between inertinite and inertinite-rich microlithotypes                                   |
| Figure 3.13 Correlation between minerals and mineral-rich microlithotypes                                        |
| Figure 3.14 Correlation of vitrite, liptite and clarite with Group I chars                                       |
| Figure 3.15 Correlation of vitrinertite-V, vitrinertite-I, vitrinertite V=I & trimacerals with Group II chars 66 |
| Figure 3.16 Correlation of inertite and durite with Group III chars                                              |
| Figure 3.17 Percentage of char subtypes for 1, 5, 8 and 15 atm furnace pressure chars                            |
| Figure 3.18 Percentage of char types for Series C1 chars                                                         |
| Figure 3.19 Percentage of char groups for Series C1 chars                                                        |
| Figure 3.20 Char mean diameter, porosity and sphericity for Series C1 chars73                                    |
| Figure 3.21 Correlation of (vitrite, liptite + clarite) with Group I combustion chars74                          |
| Figure 3.22 Correlation of vitrinertite-V, vitrinertite-I, vitrinertite V=I & trimacerals with Group II          |
| combustion chars                                                                                                 |
| Figure 3.23 Correlation of (inertite + durite) with Group III combustion chars74                                 |

viii

Figure 4.1 Percentage of Group I, II and III Series P3 chars prepared at 5 atm and 1100 °C......85 Figure 4.5 Percentage of char subtypes prepared from Kogan Creek coal at 5,10 and 15 atm and 1100 °C ... 90 Figure 4.6 Percentage of Groups I, II and III in Fassifern chars prepared at 5,10 and 15 atm and 1100 °C .... 90 Figure 4.7 Percentage of char subtypes prepared from Fassifern coal at 5,10 and 15 atm and 1100 °C..........92 Figure 4.8 Percentage of Groups I, II and III in Lithgow chars prepared at 5,10 and 15 atm and 1100 °C ..... 93 Figure 4.9 Percentage of char subtypes prepared from Lithgow coal at 5,10 and 15 atm and 1100 °C...........93 Figure 4.10 Percentage of Groups I, II and III in Jellinbah chars prepared at 5,10 and 15 atm and 1100 °C..94 Figure 4.11 Percentage of char subtypes prepared from Jellinbah coal at 5,10 and 15 atm and 1100 °C .......95 Figure 4.12 Percentage of Group I, II and III Series P4 chars prepared at 5 atm and 1300 °C......96 Figure 4.13 Percentage of Group I, II and III Series P4 chars prepared at 10 atm and 1300 °C......96 Figure 4.15 Percentage of Groups I, II and III in Kogan Creek chars at 5,10 and 15 atm and 1300 °C ...... 100 Figure 4.16 Percentage of char subtypes from Kogan Creek coal at 5,10 and 15 atm and 1300 °C ...... 100 Figure 4.17 Percentage of Groups I, II and III in Fassifern chars at 5,10 and 15 atm and 1300 °C..... 101 Figure 4.18 Percentage of char subtypes prepared from Fassifern coal at 5,10 and 15 atm and 1300 °C ..... 101 Figure 4.19 Percentage of Groups I, II and III in Lithgow chars prepared at 5,10 and 15 atm and 1300 °C. 102 Figure 4.20 Percentage of char subtypes prepared from Lithgow coal at 5,10 and 15 atm and 1300 °C. ..... 103 Figure 4.21 Percentage of Groups I, II and III in Jellinbah chars at 5,10 and 15 atm and 1300 °C ..... 104 Figure 4.22 Percentage of char subtypes prepared from Jellinbah coal at 5,10 and 15 atm and 1300 °C ..... 104 Figure 5.1 Percentage of Group I, II and III Series P5 and P6 chars prepared at 1 atm and 1300 °C......110 Figure 5.2 Percentage of Group I, II and III Series P5 and P6 chars prepared at 5 atm and 1300 °C...... 110 Figure 5.3 Percentage of Group I, II and III Series P5 and P6 chars prepared at 10 atm and 1300 °C...... 112 Figure 5.4 Percentage of Group I, II and III Series P5 and P6 chars prepared at 15 atm and 1300 °C...... 112 Figure 5.5 Mean diameter, porosity and sphericity of Series P5 and P6 chars prepared at 1,5, 10 and 15 atm Figure 5.6 Percentage of Groups I, II and III in Dull lithotype chars at 1, 5, 10 and 15 atm and 1300 °C .... 116 Figure 5.7 Percentage of char subtypes from the Dull lithotype at 1, 5, 10 and 15 atm and 1300 °C ...... 116 Figure 5.8 Percentage of Groups I, II and III in Dull-banded lithotype chars prepared at 1, 5, 10 and 15 atm Figure 5.9 Percentage of char subtypes prepared from the Dull-banded lithotype at 1, 5, 10 and 15 atm and Figure 5.10 Percentage of Groups I, II and III in Banded lithotype chars prepared at 1, 5, 10 and 15 atm and Figure 5.11 Percentage of char subtypes prepared from the Banded lithotype at 1, 5, 10 and 15 atm and Figure 5.12 Percentage of Groups I, II and III in Bright-banded lithotype chars prepared at 1, 5, 10 and 15 

| Figure 5.13 Percentage of char subtypes prepared from the Bright-banded lithotype at 1, 5, 10 and 15 atm and                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1300 °C                                                                                                                                              |
| Figure 5.14 Percentage of Groups I, II and III in Bright lithotype chars prepared at 1, 5, 10 and 15 atm and 1300 °C                                 |
| Figure 5.15 Percentage of char subtypes prepared from the Bright lithotype at 1, 5, 10 and 15 atm and                                                |
| 1300 °C                                                                                                                                              |
| Figure 5.16 Maan diameter, percently and enhanisity of Series P5 and P6 obers prepared at 1, 5, 10 and 15 atm                                        |
| Figure 5.16 Mean diameter, porosity and sphericity of Series F5 and F6 chars prepared at 1, 5, 16 and 15 adm                                         |
| and 1300 °C versus char preparation pressure                                                                                                         |
| Figure 5.17 Mean diameter, porosity and sphericity of Series P5 and P6 chars prepared at 1,5, 10 and 15 atm                                          |
| and 1300 °C versus volatile yield                                                                                                                    |
| Figure 5.18 Proportion of Group I, Group II and Group III Series P5 and P6 chars prepared at 1,5, 10 and 15<br>atm and 1300 °C versus volatile yield |
| Figure 6.1 Plot of maximum vitrinite reflectance, volatile yield and carbon content versus maximum                                                   |
| reflectance for the three maceral groups                                                                                                             |
| Figure 6.2 Manual full coal reflectogram of an Eastern Australian high volatile bituminous coal with                                                 |
| approximately 60 % vitrinite content 129                                                                                                             |
| Figure 6.3 Manual full coal reflectogram of a high vitrinite content Fastern Australian high volatile                                                |
| historianus and with approximately 80 % vitrinite content                                                                                            |
| Einer CANGeneral fall and and approximately 80 % vitaline content                                                                                    |
| Figure 6.4 Manual full coal reflectogram of a nigh mertinite Eastern Australian nigh volatile bituminous coal                                        |
| with approximately 30 % vitrinite content                                                                                                            |
| Figure 6.5 Automated full coal reflectogram of an Eastern Australian high volatile bituminous coal plotted on                                        |
| the same reflectance scale as manual analyses and against cumulative frequency                                                                       |
| Figure 6.6 Schematic illustration of the vitrinite reflectance distributions of coals                                                                |
| Figure 6.7 Mean diameter, porosity and sphericity of Series 2 and 3 pyrolysis and Series 1 combustion chars                                          |
| prepared at 1100 °C versus mean random telovitrinite reflectance                                                                                     |
| Figure 6.8 Mean diameter, porosity and sphericity of Series 2 and 3 pyrolysis and Series 1 combustion chars                                          |
| prepared at 1100 °C versus vitrinite content                                                                                                         |
| Figure 6.9 Mean diameter, porosity and sphericity of Series 2 and 3 pyrolysis and Series 1 combustion chars                                          |
| prepared at 1100 °C versus full maceral reflectogram parameter                                                                                       |
| Figure 6.10 Mean diameter, porosity and sphericity of Series 4 and 5 chars prepared at 1300 °C versus mean                                           |
| random telovitrinite reflectance                                                                                                                     |
| Figure 6.11 Mean diameter, porosity and sphericity of Series 4 and 5 chars prepared at 1300 °C versus                                                |
| vitrinite content                                                                                                                                    |
| Figure 6.12 Mean diameter, porosity and sphericity of Series 4 and 5 chars prepared at 1300 °C versus full                                           |
| maceral reflectogram parameter                                                                                                                       |
| Figure 6.13 Proportion of Group I, Group II & Group III Series 2 & 3 pyrolysis & Series 1 combustion chars                                           |
| prepared at 1100 °C vs. mean random telovitrinite reflectance.                                                                                       |
| Figure 6.14 Proportion of Group I. Group II & Group III Series 2 & 3 pyrolysis & Series 1 combustion chars                                           |
| prepared at 1100 °C vs. vitrinite content                                                                                                            |
| prepared at 1100 °C vs. vitrinite content                                                                                                            |

| Figure 6.15 Proportion of Group I, Group II & Group III Series 2 & 3 pyrolysis & Series 1 combustion chars |
|------------------------------------------------------------------------------------------------------------|
| prepared at 1100 °C vs. full maceral reflectogram parameter                                                |
| Figure 6.16 Proportion of Group I, Group II and Group III Series 4 and 5 chars prepared at 1300 °C versus  |
| mean random telovitrinite reflectance                                                                      |
| Figure 6.17 Proportion of Group I, Group II and Group III Series 4 and 5 chars prepared at 1300 °C versus  |
| vitrinite content                                                                                          |
| Figure 6.18 Proportion of Group I, Group II and Group III Series 4 and 5 chars prepared at 1300 °C versus  |
| full maceral reflectogram parameter                                                                        |
| Figure 6.19 Comparison between predicted and experimental proportions of Group I chars formed at 1, 5, 10  |
| and 15 atm and 1300 °C 148                                                                                 |

### Table of Tables

| Table 1.1 Combustion and gasification process conditions                                                    |
|-------------------------------------------------------------------------------------------------------------|
| Table 1.2 Differences between combustion and gasification 8                                                 |
| Table 2.1 Coal samples and char preparation series 28                                                       |
| Table 3.1 Proximate, maceral, microlithotype and mean random telovitrinite reflectance data                 |
| Table 3.2 Char classification system                                                                        |
| Table 3.3 Summary of various char morphology classification systems 43                                      |
| Table 3.4 Char morphology and volatile yield for Series P1 chars 52                                         |
| Table 3.5 Coefficients of determination, r <sup>2</sup> , for Series P1 chars                               |
| Table 3.6 Char morphology and volatile yield for Series P2 chars 58                                         |
| Table 3.7 Coefficients of determination, r <sup>2</sup> , for Series P2 high pressure pyrolysis chars       |
| Table 3.8 Coefficients of determination, r <sup>2</sup> , of macerals vs. microlithotypes                   |
| Table 3.9 Coefficients of determination, r <sup>2</sup> , for Series P2 chars                               |
| Table 3.10 Char morphology and burnout for Series C1 chars                                                  |
| Table 3.11 Coefficients of determination, r <sup>2</sup> , for Series C1 chars                              |
| Table 3.12 Summary of differences between combustion chars and their high pressure pyrolysis analogues .76  |
| Table 3.13 Coefficients of determination for correlation between burnout & pyrolysis char characteristics77 |
| Table 4.1 Sample proximate, maceral, microlithotype and mean random telovitrinite reflectance data          |
| Table 4.2 Char morphology for Series P3 chars                                                               |
| Table 4.3 Coefficients of determination, r <sup>2</sup> , for Series P3 chars                               |
| Table 4.4 Char morphology for Series P4 chars. 98                                                           |
| Table 4.5 Coefficient of determination, r2, for Series P4 chars 99                                          |
| Table 5.1 Proximate analysis, mean feed diameter, maceral contents, and mean random telovitrinite           |
| reflectance for each lithotype                                                                              |
| Table 5.2 Char morphology for Series P5 (PDTF) and P6 (DTF) chars                                           |
| Table 5.3 Coefficients of determination for correlation between parent coal vitrinite content, full maceral |
| reflectogram parameter, and the proportion of Group I chars                                                 |

| Table 5.4 Coefficients of determination for correlation between char volatile yield at each furnace pressure   |
|----------------------------------------------------------------------------------------------------------------|
| and properties of the parent coal                                                                              |
| Table 6.1 Full maceral reflectogram parameter, vitrinite content and mean telovitrinite reflectance for        |
| Pyrolysis Series 2-5 samples and Combustion Series 1 samples                                                   |
| Table 6.2 Regression coefficients for mean telovitrinite reflectance, vitrinite content and FMRP for Pyrolysis |
| Series 3-5 samples prepared at 5 atmospheres furnace pressure                                                  |
| Table 6.3 Regression coefficients for mean telovitrinite reflectance, vitrinite content and FMRP for Pyrolysis |
| Series 3-5 samples prepared at 10 atmospheres furnace pressure                                                 |
| Table 6.4 Regression coefficients for mean telovitrinite reflectance, vitrinite content and FMRP for Pyrolysis |
| Series 3-5 samples prepared at 15 atmospheres furnace pressure                                                 |
| Table 6.5 Equations for correlations of vitrinite content and FMRP with Group I % for Pyrolysis Series 3-5     |
| samples prepared at 1300 °C and 5-15 atm furnace pressure                                                      |
| Table 6.6 Range of usefulness of various parameters for prediction of daughter char properties                 |

5 September 2004

## Glossary, Abbreviations and Symbols

| ad or a.d.         | Air-dried basis of analysis.                                                                                                                                                                                                           |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| anisotropic        | Coal or coke showing directional changes in optical reflectance due<br>to rearrangement of carbon structural units by pressure or heating.                                                                                             |
| anthracite         | Very high rank coal with a carbon content of circa 91 % in vitrite and a volatile matter content of less than 8 % (daf).                                                                                                               |
| ash                | The sum of the inorganic matter and the minerals in the coal as determined by proximate analysis (AS1038.3).                                                                                                                           |
| bituminous<br>coal | A type of coal between subbituminous coal and semianthracite, including thermal and coking coals.                                                                                                                                      |
| burnout            | Degree of consumption of combustible material in the raw fuel, as a percentage. Percentage burnout is calculated using the ash tracer technique (Chapter 2.7).                                                                         |
| Carboniferous      | Period of the Geological Time Scale from about 360 million years<br>before present to about 286 million years before present. Named for<br>the rich coal deposits formed in many parts of the Northern<br>Hemisphere during this time. |
| carbonisation      | The heating of coal in the absence of oxygen to produce a carbon-<br>rich solid (e.g. char) and liquid or gaseous products (e.g. coal gas,<br>tars).                                                                                   |
| char               | The completely or partially devolatilised product remaining after pyrolysis of pulverised coal.                                                                                                                                        |
| clarain            | A coal lithotype that has a semi-bright, shiny lustre, is finely<br>laminated, with smooth or irregular fracture and has banding parallel<br>to bedding (Allaby and Allaby, 1990).                                                     |
| coke               | The solid formed by carbonisation of coal lumps above 900 °C and utilised in steel making.                                                                                                                                             |
| combustion         | Rapid reaction of coal with oxygen producing heat and light.                                                                                                                                                                           |

|                      | Complete combustion yields $CO_2$ , $H_2O$ , $N_2$ , $SO_x$ and ash as the primary products. Incomplete combustion yields CO, hydrocarbons, tars and carbonaceous residues.       |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| daf or d.a.f.        | dry, ash free basis of analysis, without surface water or ash                                                                                                                     |
| db or d.b.           | dry basis of analysis, without surface water                                                                                                                                      |
| devolatilisatio<br>n | Removal of volatile (gaseous and liquid) matter from coal by heating.                                                                                                             |
| dmmf or<br>d.m.m.f.  | dry, mineral matter free basis of analysis, without surface water or mineral matter                                                                                               |
| DTF                  | drop tube furnace                                                                                                                                                                 |
| durain               | A coal lithotype which is grey to brownish-black, banded, dull, with<br>a granular and rough surface. Durain is harder than vitrain and more<br>common (Allaby and Allaby, 1990). |
| EFR                  | entrained flow reactor                                                                                                                                                            |
| exinite              | see "liptinite"                                                                                                                                                                   |
| FC                   | proximate analysis fixed carbon                                                                                                                                                   |
| fixed carbon         | The difference between the initial mass and the sum of the volatile matter, ash and moisture content as determined by proximate analysis.                                         |
| fly ash              | Fine inorganic and mixed organic/inorganic particles produced by solid fuel combustion and suspended in the flue gases.                                                           |
| FMRP                 | Full maceral reflectogram parameter                                                                                                                                               |
| fuel ratio           | Ratio of proximate analysis fixed carbon to volatile matter, used as a classification parameter.                                                                                  |
| fusain               | A coal lithotype which is sooty black, with a silky lustre; it is fibrous and friable like charcoal (Allaby and Allaby, 1990).                                                    |
| fusibility           | The capability of coal components to soften and reharden during<br>heating. Fused chars may show vesicles due to degassing rounding                                               |

of angular edges and development of anisotropy.

gasification Reaction of organic material with steam and air or oxygen to produce gaseous fuels (e.g. syngas).

Gondwana(n)Coals found in rocks that were part of the Gondwana supercontinentcoals(i.e. Australian, Indian, South African and Antarctic coals formed<br/>during the Permian period).

graphitisation Development of a microstructure dominated by clusters of aromatic layers similar in structure to graphite.

heterogeneousReaction of a solid (char, coke) with a gas (oxygen, steam, carboncombustiondioxide) that causes oxidation of the carbon in the solid.

homogeneous Reaction of gases evolved from coal or char with oxidising gases.

combustion

M

IGCC Integrated Gasification Combined Cycle.

inertinite The name of the maceral group containing fusinite, inertodetrinite, macrinite, micrinite, sclerotinite and semifusinite. These macerals are relatively high in carbon due to partial oxidation during the coalification process.

isotropic Material that shows no visible ordering of optical texture under reflected light.

lignite Low rank coals characterised by high bed moisture (30-75 % ash free) and volatile matter (60-70 % d.a.f.) contents and calorific values less than 19.3 MJ.kg<sup>-1</sup>.

liptinite The name of the maceral group containing alginite, cutinite, liptodetrinite, sporinite and sporinite. These macerals are relatively high in hydrogen and volatiles.

lithotype The name of the coal type (at hand specimen scale), qualitatively assessed and dependent on the original plant structure and coalification path. Types are clarain, durain, fusain and vitrain.

proximate analysis moisture

macerals The microscopically recognisable components of the coal, defined by shape, reflectance, colour, fluorescence, anisotropy, hardness and association. Macerals do not have constant chemical compositions.

microlithotype The name of the association of different macerals within a minimum area of 50 μm. In this thesis, microlithotypes are determined for whole particles since most particles are smaller than 50 μm in diameter. Types are vitrite, inertite, liptite (monomaceral), clarite, durite, vitrinertite (bimaceral), and trimacerite (trimaceral) depending on the macerals present.

mineral matter The inorganic fraction of the coal, appearing as included mineral grains within the macerals and excluded mineral grains along fractures and veins within the coal.

moistureThe amount of water bound to the coal that is released by heatingcontentduring proximate analysis.

NO<sub>x</sub> Oxides of nitrogen produced during coal combustion.

P pressure

p.f. Pulverised fuel - coal ground to pass through a 200 mesh/75 μm sieve, mean particle diameter is about 50 μm.

PDTF high pressure drop tube furnace

Permian Period of the Geological Time Scale from about 286 million years before present to about 248 million years before present. Often noted for the extensive glaciation of the southern hemisphere during this time.

petrography The systematic description and interpretation of rock textures and composition under the microscope and as hand specimens.

proximateA chemical analytical technique in which a coal sample is treated atanalysisvarious temperatures and under different atmospheres to determinethe moisture content, volatile matter, ash and fixed carbon contents.

pyrolysis Devolatilisation (usually in an inert atmosphere) of moisture, gases

and tars from p.f. particles during the first tens of milliseconds of residence time in a furnace.

*R*<sub>ort</sub> Mean random telovitrinite reflectance in oil

rank A measure of the degree of coalification experienced by a coal. Indicates coal maturity in terms of chemical and physical properties.

reflectance The percentage of light, incident perpendicular to the flat polished surface of a maceral, which is reflected from that surface. Rank determinations using reflectance are carried out upon telovitrinite due to the homogeneity of its reflectance at a particular level of coalification.

reflectance, The highest reflectance measured when a polished sample is rotated maximum about an axis parallel to the path of the incident plane polarised light. The mean of the total is usually reported.

reflectance, The reflectance of a polished sample measured in unpolarised light without sample rotation. The mean of the total is usually reported.

residence time The length of time a particle takes to pass through the hot zone of a furnace.

semianthracite Coal between bituminous coal and anthracite in rank. Characterised by low volatile matter contents (8-13.9 % d.a.f.) and high mean random telovitrinite reflectances (about 1.9-2.7 %).

soot Very fine deposits (10-50 nm in diameter), consisting mainly of carbon from the hydrocarbons that surround the coal particle during heat treatment.

SO<sub>x</sub> Oxides of sulphur produced during coal combustion.

subbituminous Coal between lignite and bituminous coal in rank, with calorific coal values between approximately 19.3 and 30.1 MJ.kg<sup>-1</sup>. Subbituminous coals do not show any caking properties.

telovitrinite The vitrinite maceral most often used for rank determinations. Characterised by structure showing preserved cell walls, infilled cell cavities and reflectances lower than those of associated inertinites.

turbostratic Arrangement of layers composed of aromatic carbon rings in stacks. The aromatic stacks are linked by aliphatic chains and non-aromatic groups that hamper further linkage of the stacks.

ultimate A chemical analytical technique that determines the quantity of analysis elemental carbon, hydrogen, nitrogen, sulphur and oxygen (by difference) in a coal sample.

VM proximate analysis volatile yield

vesicle A void within char or coke formed by the expansion of evolved steam or gases.

vitrain A coal lithotype which is black, with a brilliant, glassy lustre, conchoidal fracture, and cubic cleavage. It is clean and structureless (Allaby and Allaby, 1990).

vitrinite The name of the maceral group containing tellinite (has visible cell structure), collinite (structureless) and various submacerals. Vitrinite reflectance increases with coal rank and is commonly used as a rank indicator.

volatile matter The material lost during proximate analysis at high temperatures and under reducing conditions after the moisture content has been removed.

#### Abstract

Drives to reduce carbon dioxide emissions and improve efficiency make pressurised gasification an attractive option in future coal utilisation technologies. Process conditions in pressurised gasification differ from conventional entrained flow combustion in pressure, atmosphere, peak temperature and heating rate, yet there is sparse literature concerning coal behaviour under pressurised conditions. Previous work suggests that bituminous coals can show enhanced plasticity at high pressures and this phenomenon may not be predicted by standard tests of coking properties.

Previous modelling of char reactivity and burnout in combustion and gasification has failed to take account of the petrographic variability of coals. Current work to improve the predictive capacity of these models requires evaluation of the effects of different macerals and of char preparation pressure on char behaviour. Prior studies of whole coals subjected to high pressure and high temperature conditions have shown that daughter char morphology is influenced by particle heating rate, the size distribution of the feed coal, furnace pressure, feed rate, coal rank and the parent coal petrography.

Chars were produced by pyrolysis at 1100 or 1300 °C and 1, 5, 8, 10 and 15 atm furnace pressure, and by combustion at 1100 °C and 1 atm furnace pressure, from a suite of East Australian bituminous coals. The characteristics of the chars and their parent feed coals were quantified using semi-automated image analysis, as well as petrographic, particle size and chemical analyses. Relationships between the morphology of the chars and properties of the parent coal and furnace pressure were established.

Daughter char morphology and volatile yield was found to be related to the petrographic composition of the parent feed coals, their full reflectance profiles and the char preparation pressure. Chars derived from vitrinite-rich lithotypes and those prepared under high pressure conditions show larger mean diameters, porosities, sphericities and proportions of porous char types. Volatile yield is related to the vitrinite content of the lithotype. A parameter derived from full coal reflectograms proves to be effective for prediction of char morphology and trends in volatile yield. The Carbon Burnout Kinetic model is improved in its predictive value by including parent coal vitrinite content as an input parameter and could be further improved by utilising the full coal reflectogram parameter.